The B+ should just go straight to the battery.
The domed black part is Bosch p/n 30090 (or similar like 1197311090) is the voltage regulator.
The D+ terminal is probably (maybe?) for a tach or dash light. That might function as the charge, so it would need run from an ignition hot source.
The black box is probably the suppression capacitor (does it say or is marked 2.2 μF?) , something like Bosch p/n 0290800052.
ETA:
https://www.aussiev8.com.au/holden-v8s/52316-bosch-alternator-wiring-torana-please-help.html
"The Bosch alternator is incapable of self-excitation, or "boot-strapping" itself to an operating condition. Older DC generators and some U.S. alternators have residual magnetism retained in the core, or some other scheme to get enough field current to get themselves up and running. The Bosch alternator uses a different scheme. The charge warning lamp is connected between the ignition switch and the D+ terminal. When the car is first started, there is no output from the alternator at either the B+ or D+ terminals. The voltage regulator, sensing no output, is attempting to command maximum field current... it effectively shorts the D+ and DF terminals together. This places the D+ terminal close to ground potential, because the resistance of the field winding is not large. This means that there is +12 volts on one side of the charge warning lamp, and the other side of the lamp is grounded through the alternator field winding.
Current thus flows through the lamp, lighting it. This same current, however, also flows through the alternator field winding, producing a magnetic field. This magnetic field is what the alternator needs to start up, and if everything is working correctly, that's exactly what happens. The alternator now begins to develop identical voltages at the D+ and B+ terminals. The D+ terminal is connected to one end of the charge warning lamp, while the other end of the lamp is connected to the battery via the ignition switch. Since the B+ terminal is hard-wired to the battery, and since both the D+ and B+ diodes are fed from the same set of windings in the alternator, no voltage difference can exist between these two points. The warning lamp goes out.
The voltage regulator "watches" the voltage at the D+ point, which should be the same as that applied to the battery. It now changes the short between the D+ and DF terminals into a variable resistance. This effectively controls the field current (whose source is now the output from the D+ terminal, and not the charge warning lamp) and thus regulates the output voltage of the alternator."